欧意最新版本
欧意最新版本app是一款安全、稳定、可靠的数字货币交易平台。
APP下载 官网地址
fill币可以继承吗
可以,fill币实际上就是一种虚拟商品,比如说比特币,加密货币就是一种网络虚拟财产,如果加密货币持有人去世了,那么加密货就可以是一个物,并且是持有人的合法虚拟财产的时候,就可以作为继承权的客体而被继承人依法继承。
Fill币一个价值多少
48.8美元,折合人民币315元
大数据和人工智能的发展带来庞大的数据存储缺口,中心化存储的弊端逐渐影响互联网的发展,当前的互联网更需要filecon这种安全性更高、更能避免网络堵塞的分布式存储。ipfs项目应用落地,越来越多的企业会接受ipfs的分布式存储,未来ipfs会逐渐取代中心化存储。当然fil币有着巨大优势。
随着IPFS相关技术的应用在全球范围内发展,FIL币将成为互联网关键的数据资源。数字货币创造无数的黄金财富,80%是通过挖矿了解ipfs-899实现,由于炒币的人盲目跟风,把数字货币当股票在进行低买高卖炒作,盲目投入。FIL币发布时间只有半年,目前大约约10亿枚FIL币正待挖掘。
如何建立自己的算法交易
一、传统方法
在某些假设下的显式最优策略
【Bertsimas, Dimitris, and Andrew W. Lo. "Optimal control of execution costs."Journal of Financial Markets1.1 (1998): 1-50.】这里假设了不同的价格冲击函数,然后求解得到最优的交易执行方案。根据参数的不同,最优的策略要么是全部开头卖掉、均匀减仓、或者全部最后卖掉。
【Almgren, Robert, and Neil Chriss. "Optimal execution of portfolio transactions." Journal of Risk 3 (2001): 5-40. 】这篇文章我们专栏前面有讲过,很著名的 Almgren-Chriss 模型。 张楚珩:【交易执行】Almgren-Chriss Model
【Guéant O, Lehalle C A, Fernandez-Tapia J. Optimal portfolio liquidation with limit orders[J]. SIAM Journal on Financial Mathematics, 2012, 3(1):740-764.】这篇文章我们专栏前面也有讲过;前面的 Almgren-Chriss 其实考虑的是使用市价单,而这里考虑使用限价单进行交易。 张楚珩:【交易执行】限价单交易执行
【Guéant, Olivier, and Charles‐Albert Lehalle. "General intensity shapes in optimal liquidation." Mathematical Finance 25.3 (2015): 457-495.】这里也是考虑限价单进行交易,但是与前面不同的是:前一个假设限价单考虑的成交概率随着价格指数衰减,而这里考虑了一个更加一般的形式。
【Cartea A, Jaimungal S. Optimal execution with limit and market orders[J]. Quantitative Finance, 2015, 15(8): 1279-1291.】这里考虑同时使用限价单和市价单进行交易,从而能够完成 Almgren-Chriss 模型所规定的方案,或者找到一个更有的交易方案。
【Bulthuis, Brian, et al. "Optimal execution of limit and market orders with trade director, speed limiter, and fill uncertainty." International Journal of Financial Engineering 4.02n03 (2017): 1750020.】也是考虑使用限价单和市价单一起交易。 张楚珩:【交易执行】市价单 限价单 最优执行
【Cartea A, Jaimungal S. Incorporating order-flow into optimal execution[J]. Mathematics and Financial Economics, 2016, 10(3): 339-364.】这里考虑市场所有交易者的订单都会产生线性的短期/长期市场冲击,因此可以估计未来一段时间的订单流向(买单总量和卖单总量的差),从而能够在 Almgren-Chriss 模型的基础上进行一定的调整,使得策略更优。
图书
【Cartea Á, Jaimungal S, Penalva J. Algorithmic and high-frequency trading[M]. Cambridge University Press, 2015.】讲交易执行的基础上,更侧重讲了一些数学工具。
【Guéant O. The Financial Mathematics of Market Liquidity: From optimal execution to market making[M]. CRC Press, 2016.】从 Almgren-Chriss 模型开始讲,一直到相应的拓展和实际的问题,十分推荐。
融合对于市场环境隐变量的估计
【Casgrain P, Jaimungal S. Trading algorithms with learning in latent alpha models[J]. Mathematical Finance, 2019, 29(3): 735-772.】市场交易者会根据不同的市场挂单和价格走势而采取不同的反映,因此我们也可以根据历史数据学习到各种情况下的价格后验分布,从而更好地帮助我们进行交易执行或者套利。最后的结果可以看做在 Almgren-Chriss 模型的基础上外加了一个调控项,反映我们对于未来的预期。
如何实现以按量加权平均价格(VWAP)交易
【Kakade, Sham M., et al. "Competitive algorithms for VWAP and limit order trading." Proceedings of the 5th ACM conference on Electronic commerce. 2004.】从在线学习的角度提出了几个用于使得我们交易到 VWAP 价格的模型。为什么会关注 VWAP 的交易执行?当大的流通股股东需要减持的时候,为了避免直接出售引起的价格波动,一般是把需要减持的股票卖给券商,然后由券商来拆单出售,而交易价格一般为未来一段时间的 VWAP,因此券商需要尽量以 VWAP 来交易执行。
【Białkowski, Jędrzej, Serge Darolles, and Gaëlle Le Fol. "Improving VWAP strategies: A dynamic volume approach." Journal of Banking Finance 32.9 (2008): 1709-1722.】改进对于交易量的建模,从而得到更好的 VWAP 交易算法。把交易量拆分为两个部分,一部分是市场整体的交易量变动,另一部分是特定股票上的交易量模式。
以按时间加权平均价格(TWAP)交易
为了对称,可以介绍一下另一种加权平均的情形 TWAP,这种情形实现起来相对比较简单;如果不考虑市场冲击,就拆分到每个时间步上均匀出售即可实现。
可以证明 TWAP 交易在以下两种情形下最优:市场价格为布朗运动并且价格冲击为常数;对于晚交易没有惩罚(其实更晚交易意味着面临更大的风险),但是对于最后未完成交易的惩罚较大。
二、强化学习方法
基于传统模型的强化学习方法
【Hendricks D, Wilcox D. A reinforcement learning extension to the Almgren-Chriss framework for optimal trade execution[C]//2014 IEEE Conference on Computational Intelligence for Financial Engineering Economics (CIFEr). IEEE, 2014: 457-464.】本专栏有讲。
强化学习 交易执行(Paper/Article)
【Nevmyvaka Y, Feng Y, Kearns M. Reinforcement learning for optimized trade execution[C]//Proceedings of the 23rd international conference on Machine learning. 2006: 673-680.】比较经典的一篇,发在 ICML 上,本专栏前面有讲。使用 DQN 方法,实现形式接近 DP。
【Dabérius K, Granat E, Karlsson P. Deep Execution-Value and Policy Based Reinforcement Learning for Trading and Beating Market Benchmarks[J]. Available at SSRN 3374766, 2019.】使用了 DDQN 和 PPO 方法,基于生成的价格序列来进行实验,使用特定的模型考虑短期和长期市场冲击。
【Ning B, Lin F H T, Jaimungal S. Double deep q-learning for optimal execution[J]. arXiv preprint arXiv:1812.06600, 2018.】DDQN 的强化学习解法,在美股上实验。
【Lin S, Beling P A. An End-to-End Optimal Trade Execution Framework based on Proximal Policy Optimization[C]//IJCAI. 2020: 4548-4554.】使用 PPO 的解法,比较有意思的是这里面的实验结果显示,使用 LSTM 和把历史数据全部堆叠起来用 MLP 效果差距不大。也是在美股上实验。
【Fang Y, Ren K, Liu W, et al. Universal Trading for Order Execution with Oracle Policy Distillation[J]. arXiv preprint arXiv:2103.10860, 2021.】在使用强化学习的基础上,引入了一个教师网络,教师网络学习一个基于未来数据的策略,并且用于训练学生网络。本专栏前面有讲。
【Vyetrenko S, Xu S. Risk-sensitive compact decision trees for autonomous execution in presence of simulated market response[J]. arXiv preprint arXiv:1906.02312, 2019.】ICML-19 的文章。构造了一个可以反映市价单市场冲击的模拟器;使用 tabular Q-learning 来学习基于决策树的模型;使用特征选择的方法来筛选特征。通过以上方式,能够学习到一个模型帮助决策什么时候应该下市价单、什么时候应该下限价单。
【Akbarzadeh N, Tekin C, van der Schaar M. Online learning in limit order book trade execution[J]. IEEE Transactions on Signal Processing, 2018, 66(17): 4626-4641.】从 online learning 的视角来解决这个问题,使用 DP 类的方法,分析 regret 。
【Wei H, Wang Y, Mangu L, et al. Model-based reinforcement learning for predictions and control for limit order books[J]. arXiv preprint arXiv:1910.03743, 2019.】专栏刚刚讲了的一篇文章,使用 model-based 类的强化学习算法,直接学习一个世界模型,然后让强化学习策略通过和世界模型的交互进行学习。
【Karpe M, Fang J, Ma Z, et al. Multi-agent reinforcement learning in a realistic limit order book market simulation[J]. arXiv preprint arXiv:2006.05574, 2020.】这里的多智能体似乎适用于结合历史数据生成其他市场参与者的动作,而最优策略的学习仍然是使用单智能体 DDQN 方法来做。他们开源了一个考虑多智能体的模拟环境 ABIDES。
【Schnaubelt M. Deep reinforcement learning for the optimal placement of cryptocurrency limit orders[J]. European Journal of Operational Research, 2022, 296(3): 993-1006.】研究数字货币上如何下限价单。对比了 PPO 和 DDQN,发现 PPO 更好。探索出了一些重要的因子,比如 current liquidity cost,queue imbalance 等。
强化学习 交易执行 (Thesis)
【Hu R. Optimal Order Execution using Stochastic Control and Reinforcement Learning[J]. 2016.】KTH (瑞典)工程学院硕士论文。算法直接是基于价值函数的动态规划。不过提供了比较详细的模拟环境和算法伪代码。
【Rockwell B. Optimal Order Execution with Deep Reinforcement Learning[J]. 2019.】加拿大蒙特利尔高等商学院硕士论文。使用 TD3 和 DDPG 算法,不过实验是基于人工生成的数据的(skew-normal Brownian motion)。
【Reiter M B. An Application of Deep Reinforcement Learning for Order Execution[D]. School of Engineering Science, Osaka University, 2020.】多伦多大学本科毕业论文。在使用 A3C 算法的基础上,考虑了使用教师学生网络的方式进行迁移学习,并且考虑了短期市场冲击。
强化学习 风险偏好
Robust Risk-Sensitive Reinforcement Learning Agents for Trading Markets
Deep equal risk pricing of financial derivatives with non-translation invariant risk measures
强化学习 做市策略
Optimal Market Making by Reinforcement Learning
Optimizing Market Making using Multi-Agent Reinforcement Learning
Deep Reinforcement Learning for Market Making
Deep Recurrent Q-Networks for Market Making
Robust Market Making via Adversarial Reinforcement Learning
Market making via reinforcement learning
强化学习 资产组合
Deep Stock Trading: A Hierarchical Reinforcement Learning Framework for Portfolio Optimization and Order Execution
Robo-Advising: Enhancing Investment with Inverse Optimization and Deep Reinforcement Learning
Large Scale Continuous-Time Mean-Variance Portfolio Allocation via Reinforcement Learning
fillccnano和漫步者lolli3对比
价格方面,续航时间。
1、价格。fillccnano价格为720元,而漫步者lolli3价格为278,在价格方面fillccnano比漫步者贵很多。
2、续航。根据fillccnano官网查询,fillccnano充满电续航时间为5.5小时,而漫步者lolli3续航时间为6小时,相比fillccnano要多续航半小时。

外汇买卖中的有效期:GTC, Fok 分别代表什么意思?
一、建立市价单的界面上有一个有效期的三个英文字母分别是GTC、IOC、Fok。很多投资者不知道他们是什麽意思,就连网上也很少涉及到,以下就是关于这三个字母的意思:
GTC:good till cancel,即直至取消。
IOC:immediately or cancel,立即执行否则取消。
Fok:FILL OR KILL,要么全部执行,要么不执行。
二、GTC =Good-Till-Cancelled Order 取消前有效委托,委托当日有效,隔日作废,如交易者欲使委托持续有效,可以指明取消前有效,直到成交、取消或该期权已至最后交易日为止。
Fok=Fill-or-Kill Order 成交或作废委托,所有委托必须马上执行,否则即取消的委托方式。
立即成交否则取消单 Immediate or Cancel,IOC: 所下委托单必须马上成交,否则即行取消之委托方式。全部成交否则取消单 Fill or Kill,Fok:所下委托单必须全数成交,否则立即取消之委托方式。
扩展资料:
从交易的本质和实现的类型来看,外汇买卖则可以为以下两大类:
1、为满足客户真实的贸易、资本交易需求进行的基础外汇交易;
2、在基础外汇交易之上,为规避和防范汇率风险或出于外汇投资、投机需求进行的外汇衍生工具交易。
属于第一类的基础外汇交易主要是即期外汇交易,而外汇衍生工具交易则包括远期外汇交易,以及外汇择期交易、掉期交易、互换交易等。
外汇交易主要有 2 个原因.大约每日的交易周转的 5% 是由于公司和政府部门在国外买入或销售他们的产品和服务, 或者必须将他们在国外赚取的利润转换成本国货币. 而另外95%的交易是为了赚取盈利或者投机。
对于投机者来说,最好的交易机会总是交易那些最通常交易的 ( 并且因此是流动量最大的 )货币, 叫做“主要货币”. 今天, 大约每日交易的 85% 是这些主要货币, 它包括美元,日元,欧元,英镑,瑞士法郎,加拿大元和澳大利亚元。
参考资料来源:百度百科-外汇交易
美股交易规则:Fill or Kill有什么意义
最优五档即时成交剩余撤销申报,全额成交否则作废也就是在不考虑行情信息差异的情况下,依次以“买一”到“买五”价格作为卖出价格或依次以“卖一”到“卖五”价格作为买入价格,同时如申报无法全部成交,剩余未匹配量自动撤销的申报方式。美股研究社
最优五档即时成交剩余转限价Fill or Kill是指无需指定委托价格,委托进入交易主机时能与“最优五档”范围内的对手方队列成交或部分成交即予以撮合,未成交部分自动转为限价的委托方式,一笔委托可以与对手方数笔不同价格的委托撮合成交。